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We use a hydrodynamic minimal streamer model to study negative corona discharge. By reformulating the
model in terms of a quantity called a shielding factor, we deduce laws for the evolution in time of both the
radius and intensity of the ionization fronts. We also compute the evolution of the front thickness under the
conditions for which it diffuses due to the geometry of the problem and show its self-similar character.
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A common feature in transient discharges preceding di-
electric breakdown is the creation of a nonequilibrium
plasma through the propagation of a nonlinear ionization
wave into a previously nonionized region. Modern concepts
of pattern formation which have been already applied in dif-
ferent contextsssee, e.g,f1,2gd have also been used in order
to gain new analytical insight into this old problemf3g.

When a sufficiently high voltage is suddenly applied to a
medium with low or vanishing conductivity, extending fin-
gers of ionized matter develop. They are called streamers and
are ubiquitous in nature and in technologyf4,5g. A minimal
streamer model, consisting of a fluid approximation with lo-
cal field-dependent impact ionization in a nonattaching gas
like argon or nitrogen, has been used to study the basics of
streamer dynamicsf3,6–9g.

We consider in this paper the evolution of negative ion-
ization fronts in a gas under the influence of a nonuniform
external electric field. The field is created by a potential dif-
ferenceV0 applied between a pair of electrodes. The geom-
etry of the electrodes determines the nonuniformity of the
electric field. A discharge develops in the high-field region
near the sharper electrode, and it spreads out towards the
other electrode. This type of discharge is called a corona. It is
a negative corona discharge when the electrode with the
strongest curvature is connected to the negative terminal of
the power supply. We will consider this case.

The so-called minimum modelf3,8–10g consists in the
following dimensionless set of equations:

]ne

]t
− = · j = nefsEd, s1d

]ni

]t
= nefsEd, s2d

= ·E = ni − ne. s3d

Equations1d describes the rate of change of the local dimen-
sionless electron densityne. It is equal to the divergence of
the local electron current densityj plus a source termnefsEd
representing the generation of electron-ion pairs due to the
impact of accelerated electrons with neutral gas molecules.
The value offsEd is given by the Townsend approximation

fsEd = E exps− 1/Ed, s4d

whereE is the modulus of the local electric fieldE. In Eq.
s2d we consider that the rate of change of the ion densityni is
equal to the source term due to impact, since we take the ion
current density to be negligible in a first approximationsthe
speed of ions is typically much smaller than that of elec-
tronsd. The local value of the electron current density is
specified as

j = neE + D = ne, s5d

using Ohm’s law in the first term and considering diffusion
effects in the second one. Note that this expression does not
include the effect of the magnetic field created by the motion
of electrons, as it is supposed that their speed is much
smaller than the speed of light. Expressions3d is Poisson’s
equation, coupling the electric field to the charge densities.

Since our primary goal in this paper is to address the
effects of curvature in front propagation, we will neglect
diffusion effectsf9g. That allows us to reduce the set of equa-
tions s1d–s3d to a simpler form in order to give analytical
results for the evolution of the ionization fronts. From Eqs.
s1d, s2d, ands5d, with D=0, we obtain

]

]t
sni − ned + = · sneEd = 0, s6d

and from Eq.s3d, taking the time derivative,

= ·S ]E

]t
D =

]

]t
sni − ned. s7d

Equationss6d and s7d give then

= ·S ]E

]t
+ neED = 0. s8d

The term inside brackets in Eq.s8d is, due to Maxwell equa-
tions, proportional to the curl of the magnetic field in the gas.
As it is supposed that the magnetic field is negligible, we can
take it equal to zero and integrate in time, yielding

Esr ,td = E0sr dexpS−E
0

t

dtnesr ,tdD , s9d

which gives the local electric fieldE in terms of the initial
electric field E0 and the electron densityne integrated in
time. Equations9d motivates the definition of the quantity
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usr ,td = expS−E
0

t

dtnesr ,tdD . s10d

If this quantity is completely determined in a particular prob-
lem, then using Eqs.s9d, s10d, ands3d all the physical fields
can be obtained through the expressions

Esr ,td = E0sr dusr ,td, s11d

nesr ,td = −
1

usr ,td
]usr ,td

]t
, s12d

nisr ,td = −
1

usr ,td
]usr ,td

]t
+ = · fE0sr dusr ,tdg, s13d

in which the initial conditionE0 for the electric field should
be known. Equations11d reveals clearly the role played by
the functionusr ,td as a factor modulating the electric fieldE
at any time. The electronic density is positive, sousr ,td de-
cays, damping the electric field. For this reason we call it the
shielding factor. The shielding factor determines a screening
length which changes with time: a kind of Debye length
which moves with the front, leaving behind a neutral plasma.

The problem is thus reduced to finding equations and con-
ditions for the shielding factorusr ,td from equations and
conditions for the physical quantitiesE, ne, and ni. Substi-
tuting Eqs.s11d–s13d into the model equationss1d–s3d, after
some algebraic manipulations and integrating once in time,
the evolution ofusr ,td is given by

1

u

]u

]t
= = · sE0ud − ni0sr d −E

E0u

E0

expS− 1

s
Dds, s14d

usr ,0d = u0sr d = 1, s15d

where E0 is the modulus ofE0 and ni0 is the initial ion
density. Boundary conditions should be imposed depending
on the particular physical situation.

In what follows we will consider a typical corona geom-
etry: two spherical plates with internal radiusR0 and R1
@R0, respectively. An electric potential differenceV0 is ap-
plied to these plates, so thatVsR1d−VsR0d=V0.0. The ini-
tial seed of ionization is taken to be neutral so that

ne0srd = ni0srd = r0srd. s16d

We consider the evolution of negative ionization fronts to-
wards the positive plate atr =R1. The initial electric field
E0srd between the plates is

E0srd = −
C

r2ur, C = V0
R0R1

R1 − R0
. s17d

We substitute Eq.s17d into Eq. s14d and change the spatial
variabler to

x =
r3

3C
, s18d

so that the evolution for the screening factor takes the form

]u

]t
+ u

]u

]x
= − ur0sxd − uE

usC/9x2d1/3

sC/9x2d1/3

expS− 1

s
Dds. s19d

Equations19d governing the behavior of the screening factor
is a Burgers-type equation, wherer0sxd is the initial distri-
bution of charge. The condition for the initial value of the
screening factor is, by Eq.s15d, usx,0d=1. Following the
usual procedure of resolution of the Burgers equation we can
integrate Eq.s19d along the characteristicsxcstd defined by

dxcstd
dt

= u„xcstd,t…, s20d

transforming Eq.s19d into an ordinary differential equation.
First the case of sufficiently localized initial conditions is

considered. More specifically, the initial electron density
strictly vanishes beyond a certain point. Under similar con-
ditions, the existence of shock fronts with constant velocity
has been predicted for the simpler planar geometryf3g.

Taking a homogeneous thin layer of widthd! sR1−R0d
from r =R0 to r =R0+d, the initial charge distribution is then

ne0srd = ni0srd = r0, R0 , r , R0 + d,

ne0srd = ni0srd = 0, R0 + d , r , R1. s21d

In Fig. 1 we show the electron density distributionne which
corresponds to some arbitrary choice of parametersr0, d, R0,
R1, and V0. The electron density has been calculated using
expressions12d and plotted as a function ofr at different
times t. There appears a sharp shock with decaying ampli-
tude, separating the region with charge and the region with-
out charge.

From these numerical data, we can measure the velocity
of propagation of such a front. In Fig. 2 the position of the
shock r f is plotted as a function of time. The velocity of

FIG. 1. The shock-wave development at regular intervals of
time when the initial charge distribution is well localized. The am-
plitude of the front calculated analytically is plotted as the dashed
line.
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propagation is clearly not constant. However, if we plot the
position of the front in terms ofx, one can observe the linear
relation ssee the inset in Fig. 2d

xfstd = t + x0, s22d

which implies, in terms of the original variabler, an
asymptotic behavior

r fstd , s3Cd1/3t1/3 s23d

for the position of the front.
Remarkably we can deduce expressions for both the am-

plitude and propagation velocity of the shock in explicit ana-
lytical form. In order to do that, we write locally near the
front the solution as

usx,td = 1 −astdwsjd, j = x − xfstd. s24d

We substitute this ansatz into Eq.s19d, and since the integral
term is small whenx@1, we get

astdw8sjd − astdw8sjdxf8std − a8stdwsjd + a2stdwsjdw8sjd < 0,

s25d

implying that

xfstd = t + x0, s26d

astd =
b

st + t0d
, s27d

wsjd = b−1sx − t − x0d, s28d

whereb is an arbitrary constant to be fixed from initial con-
ditions. Equations26d proves that the position of the shock
front follows the laws23d for spherical geometry.

From Eq.s12d, the electron density reads

nesx,td < 5 1

t + t0

1 + sx − t − x0d/st + t0d
1 − sx − t − x0d/st + t0d

, x ø t + x0,

0, x . t + x0,
6
s29d

which implies that the amplitude of the front decays as

nesxfstd,td =
1

t + t0
. s30d

In Fig. 1 the analytical curves30d has been plotted as the
dashed line, showing excellent agreement with the numerical
data.

We want to conclude this paper with a brief discussion of
the case in which the initial charge distribution is not local-
ized as, for instance, one such that

ne0sxd = ni0sxd = r0sxd , e−lx, x @ 1. s31d

For the planar case it was predicted inf3g that the front
propagated with a constant velocity, although no shock front
would develop unless the decay is sufficiently fast.

As we did above, we solve the problem numerically as-
suming spherical symmetry, sox is related to the radial co-
ordinater by Eq. s18d. In Fig. 3 the solution for the electron
density is shown. The shock front does not appear in this
case. Instead, a front with increasing thickness propagates. In
the scaled variablex, we have checked that the center of this
front moves with constant velocity as the shock front does.
These facts are apparent from the figure.

Using scaling arguments, it can be shown that the
asymptotic local behavior near the front can be described in
the self-similar form

nesx,td <
1

t
fS j

dlt
D , s32d

wherej=x− t, f is some universal self-similar profile anddl

is a constant measuring the front thickness in rescaled units.
Its value depends on the physical parameters and initial con-

FIG. 2. Position of the shock front versus time. Squares are
numerical results, and the solid lines are the theoretical predictions.
In the inset the position in the scaled variablex is shown. The linear
dependence in this variable as predicted in Eq.s26d can be
observed.

FIG. 3. Front development when the initial condition is not lo-
calized, plotted at regular intervals of time.
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ditions. Hence the front presents a typical thickness

jc < dlt. s33d

The fact that, even neglecting diffusion, the front spreads out
linearly in time is a remarkable feature of the curved geom-
etry considered here. For this reason it can be termed as
geometrical diffusion. In Fig. 4 we have plotted the numeri-
cal solutions rescaled according to Eq.s32d showing a clear
convergence towards a universal profile.

The principal results and contributions from the work pre-
sented in this paper can be summarized as follows. First we
have introduced the shielding factor as the factor damping
the electric field in nonequilibrium electric discharges when
the magnetic field can be considered negligible, Eq.s10d.
This factor defines a characteristic length analogous to De-
bye length for stationary discharges. The physics contained
in the minimum model for streamer discharges can be re-
duced to the study of the evolution of the shielding factor.
We have derived the equation which governs its evolution,
Eq. s14d, for a gas like nitrogen or argon without taking into
account the diffusion of charged species and the processes of
photoionization.

Then we have considered the case of a negative corona
discharge with spherical symmetry. In this case, the dis-
charge takes place in a nonhomogeneous electric field and
the equation for the shielding factor turns out to be a Burgers
one. We have extended the results of planar fronts to this
case where the geometry is curved. Depending on the initial

conditions for the charge distribution, one might have nega-
tive shocks or spreading fronts. In both cases, the amplitude
decreases in time and the propagation velocity follows a
power law. In the case of spreading fronts we have proved
the appearance of diffusion-type phenomena due to purely
geometrical effects.
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FIG. 4. Front profiles rescaled according to the self-similar law
given by expressions32d. The profiles converge asymptotically to
function f in that expression.
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