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lonization fronts in negative corona discharges
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We use a hydrodynamic minimal streamer model to study negative corona discharge. By reformulating the
model in terms of a quantity called a shielding factor, we deduce laws for the evolution in time of both the
radius and intensity of the ionization fronts. We also compute the evolution of the front thickness under the
conditions for which it diffuses due to the geometry of the problem and show its self-similar character.
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A common feature in transient discharges preceding di- f(E) = E exp(— 1/E), (4)
electric breakdown is the creation of a nonequilibrium . o
plasma through the propagation of a nonlinear ionizatiof?hereE is the modulus of the local electric fiel. In Eq.
wave into a previously nonionized region. Modern conceptd?) We consider that the rate of change of the ion denity
of pattern formation which have been already applied in dif-€qual to the source term due to impact, since we take the ion
ferent contextgsee, e.g[1,2]) have also been used in order Current density to be negligible in a first approximatitine
to gain new analytical insight into this old probleis]. speed of ions is typically much smaller than that of_ele_c-
When a sufficiently high voltage is suddenly applied to atrons)_.. The local value of the electron current density is
medium with low or vanishing conductivity, extending fin- SPecified as
gers of ionized matter develop. They are called streamers and j=nE+DVn,, (5)
are ubiquitous in nature and in technoldgy5]. A minimal ) ) i o o
streamer model, consisting of a fluid approximation with lo-Using Ohm’s law in the first term and considering diffusion
cal field-dependent impact ionization in a nonattaching ga§ffects in the second one. Note that this expression does not
like argon or nitrogen, has been used to study the basics dficlude the effect of the magnetic field created by the motion
streamer dynamick3,6—9. of electrons, as it is supposed that their speed is much
We consider in this paper the evolution of negative ion-Smaller than the speed of light. Expressi@) is Poisson’s
ization fronts in a gas under the influence of a nonuniform@guation, coupling the electric field to the charge densities.
external electric field. The field is created by a potential dif- _Since our primary goal in this paper is to address the
ferenceV, applied between a pair of electrodes. The geom&ffeCts of curvature in front propagation, we will neglect
etry of the electrodes determines the nonuniformity of thediffusion effectg9]. That allows us to reduce the set of equa-
electric field. A discharge develops in the high-field regiontions (1)<(3) to a simpler form in order to give analytical
near the sharper electrode, and it spreads out towards t#&Sults for the evolution of the ionization fronts. From Egs.
other electrode. This type of discharge is called a corona. It i§1): (2), and(5), with D=0, we obtain
a negative corona discharge when the electrode with the 9
strongest curvature is connected to the negative terminal of E(ni —-ng+ V - (nE)=0, (6)
the power supply. We will consider this case.
The so-called minimum moddB,8-10 consists in the and from Eq.(3), taking the time derivative,

following dimensionless set of equations:
JE d
V. (—) =—(ni—ng. (7)
Me _ V -j=nf(E) (1) ~ 7
at )=t Equations(6) and (7) give then
JE
V-(—+neE>:0. (8)
ﬁni ot
r =nf(E), (2

The term inside brackets in E() is, due to Maxwell equa-
tions, proportional to the curl of the magnetic field in the gas.

—n As it is supposed that the magnetic field is negligible, we can
V-E=n-ng (3) . . L -9
take it equal to zero and integrate in time, yielding
Equation(1) describes the rate of change of the local dimen- t
sionless electron density,. It is equal to the divergence of E(r,t) = Eq(r)exp - . dme(r,7) |, (9

the local electron current densityplus a source term,f(E)

representing the generation of electron-ion pairs due to thevhich gives the local electric fiel& in terms of the initial
impact of accelerated electrons with neutral gas moleculeslectric field E, and the electron density, integrated in
The value off(E) is given by the Townsend approximation time. Equation(9) motivates the definition of the quantity
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t 0.2 T —T
u(r,t)=ex;<—f dme(r,r)>. (10) \\
0

If this quantity is completely determined in a particular prob-  ¢.15 )
lem, then using Eq49), (10), and(3) all the physical fields '
can be obtained through the expressions '

E(r,t) = Eq(r)u(r,t), (11) c® 0.1
1 au(r,t)
ng(r,t) = - , 12 AN
dry u(r,t)y ot 12 0.05 .
T~
1 oau(r,t =
n(r,t) =- o, V - [Eonu(r,p)], (13
u(r,t) ot ot— : . - .
4 6 8 10 12 14
in which the initial conditionE, for the electric field should r

be known. Equatior{11) reveals clearly the role played by
the func_t'onu(r Dasa fac_tor modula_ltlng th(_e electric fiefd time when the initial charge distribution is well localized. The am-
at any time. The electronic density is positive,180,t) de-  ,jide of the front calculated analytically is plotted as the dashed
cays, damping the electric field. For this reason we call it thgjne.

shielding factor The shielding factor determines a screening

length which changes with time: a kind of Debye length

2\1/3
which moves with the front, leaving behind a neutral plasma. M, u@ = — Upg(X) - uf(mx ) exp<_—sl)ds. (19)
u(Crox?)3

FIG. 1. The shock-wave development at regular intervals of

The problem is thus reduced to finding equations and con- ot X
ditions for the shielding factou(r,t) from equations and
conditions for the physical quantities, n,, andn;. Substi-  Equation(19) governing the behavior of the screening factor
tuting Eqgs.(11)—(13) into the model equationd)—(3), after i a Burgers-type equation, whepg(x) is the initial distri-
some algebraic manipulations and integrating once in timehution of charge. The condition for the initial value of the
the evolution ofu(r,t) is given by screening factor is, by Eq15), u(x,0)=1. Following the

£ usual procedure of resolution of the Burgers equation we can
1du =V - (Eq) = nig(r) - 0 exp<_—1)ds, (14) integrate Eq(19) along the characteristiog(t) defined by
s

u ot
dx(t)
u(r,0) = ug(r) =1, (15) dt

where Ej is the modulus ofEqy and ng is the initial ion  transforming Eq(19) into an ordinary differential equation.
density. Boundary conditions should be imposed depending First the case of sufficiently localized initial conditions is
on the particular physical situation. considered. More specifically, the initial electron density

In what follows we will consider a typical corona geom- strictly vanishes beyond a certain point. Under similar con-
etry: two spherical plates with internal radil® and R;  ditions, the existence of shock fronts with constant velocity
> R, respectively. An electric potential different® is ap-  has been predicted for the simpler planar geomigty

Equ

= U(x(1),1), (20)

plied to these plates, so th¥tR;)—V(Ry)=Vy>0. The ini- Taking a homogeneous thin layer of width< (R;—Ry)

tial seed of ionization is taken to be neutral so that from r=R; to r=Ry+ 4, the initial charge distribution is then
Neo(r) = Nig(r) = po(r). (16) Neo(r) = Nig(f) = po,  Ro<T < Ry+ 5,

We consider the evolution of negative ionization fronts to-

wards the positive plate at=R;. The initial electric field Neo(r) =nip(r) =0, Ry+d8<r<Ry. (21)

Eo(r) between the plates is

In Fig. 1 we show the electron density distributiopwhich
RoRy ) (17) corresponds to some arbitrary choice of parameigrs, Ry,
Ri-Ro R;, andV,. The electron density has been calculated using
expression(12) and plotted as a function af at different
timest. There appears a sharp shock with decaying ampli-

C
Eo(r) =~ ﬁUr, C=Vo

We substitute Eq(17) into Eq. (14) and change the spatial

variabler to tude, separating the region with charge and the region with-
rs out charge.
X= 3C’ (18) From these numerical data, we can measure the velocity

of propagation of such a front. In Fig. 2 the position of the
so that the evolution for the screening factor takes the fornmshockr; is plotted as a function of time. The velocity of
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FIG. 3. Front development when the initial condition is not lo-

FIG. 2. Position of the shock front versus time. Squares are.glized plotted at regular intervals of time.
numerical results, and the solid lines are the theoretical predictions. '

In the inset the position in the scaled variaklis shown. The linear
dependence in this variable as predicted in E26) can be
observed.

propagation is clearly not constant. However, if we plot the

position of the front in terms af, one can observe the linear
relation(see the inset in Fig.)2

X(t) = t+Xo, (22)

which implies, in terms of the original variable, an
asymptotic behavior

ro(t) ~ (30) Y47

for the position of the front.

(23)

1 1+(X—t=X)/(t+1y)
Ne(X,t) = | t+tol —(X—t=Xx)/(t +1g)’
0, x>t+Xxg,

X<1t+Xg,

(29)

which implies that the amplitude of the front decays as

nexe(0),) = ——. (30

t+t,
In Fig. 1 the analytical curvé30) has been plotted as the
dashed line, showing excellent agreement with the numerical
data.
We want to conclude this paper with a brief discussion of

Remarkably we can deduce expressions for both the amhe case in which the initial charge distribution is not local-
plitude and propagation velocity of the shock in explicit ana-jzed as, for instance, one such that

lytical form. In order to do that, we write locally near the
front the solution as

ux,t)=1-at)e(d), &=x=x(t). (24)

We substitute this ansatz into Ed.9), and since the integral
term is small whernx>1, we get

a()¢' (9 —a)e' (Exi() —a' (Ve(d) +a(De(de' (€ =0,

(25
implying that
Xq(t) =t+Xo, (26)
__B
0= (27)
@() =B Hx—t=xo), (28)

wheref is an arbitrary constant to be fixed from initial con-
ditions. Equation(26) proves that the position of the shock
front follows the law(23) for spherical geometry.

From Eq.(12), the electron density reads

Neo(X) = Mig(X) = po(X) ~ €™, x> 1. (3D

For the planar case it was predicted [i8] that the front
propagated with a constant velocity, although no shock front
would develop unless the decay is sufficiently fast.

As we did above, we solve the problem numerically as-
suming spherical symmetry, sois related to the radial co-
ordinater by Eq.(18). In Fig. 3 the solution for the electron
density is shown. The shock front does not appear in this
case. Instead, a front with increasing thickness propagates. In
the scaled variablg, we have checked that the center of this
front moves with constant velocity as the shock front does.
These facts are apparent from the figure.

Using scaling arguments, it can be shown that the
asymptotic local behavior near the front can be described in
the self-similar form

Ne(X,t) = %f(i>

whereé=x-t, f is some universal self-similar profile ard]
is a constant measuring the front thickness in rescaled units.
Its value depends on the physical parameters and initial con-

(32)
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ditions. Hence the front presents a typical thickness L=

&~ 4t (33) 0.9%

The fact that, even neglecting diffusion, the front spreads out 08r

linearly in time is a remarkable feature of the curved geom- 0.7}
etry considered here. For this reason it can be termed a 06l
geometrical diffusionin Fig. 4 we have plotted the numeri-
cal solutions rescaled according to E82) showing a clear  c® 0.3
convergence towards a universal profile. 0.4}
The principal results and contributions from the work pre-
sented in this paper can be summarized as follows. First we 0.3f
have introduced the shielding factor as the factor damping 0.2}
the electric field in nonequilibrium electric discharges when
the magnetic field can be considered negligible, Ed).
This factor defines a characteristic length analogous to De-
bye length for stationary discharges. The physics containec
in the minimum model for streamer discharges can be re-

duced to the study of the evolution of the shielding factor. FIG. 4. Front profiles rescaled according to the self-similar law

We have derived the equatlon which 90"?”‘5 Its e.vomtlongiven by expressioii32). The profiles converge asymptotically to
Eq. (14), for a gas like nitrogen or argon without taking into fu]pctionf in that expression.

account the diffusion of charged species and the processes o
photoionization.

Then we have considered the case of a negative coronzonditions for the charge distribution, one might have nega-
discharge with spherical symmetry. In this case, the distive shocks or spreading fronts. In both cases, the amplitude
charge takes place in a nonhomogeneous electric field ardecreases in time and the propagation velocity follows a
the equation for the shielding factor turns out to be a Burgerpower law. In the case of spreading fronts we have proved
one. We have extended the results of planar fronts to thithe appearance of diffusion-type phenomena due to purely
case where the geometry is curved. Depending on the initiljeometrical effects.
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